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Abstract:  Multi-criteria decision analysis (MCDA) supports decision-making when multiple conflicting criteria must be considered. Whether a decision involves choosing a single alternative (e.g., where to site a water treatment plant) or the prioritization of many alternatives (e.g., on what subset of stream reaches should restoration be focused), MCDA provides a methodology to structure and analyze the decision process. An MCDA engine has been integrated in the EMDS since 2002. As part of the EMDS workflow, MCDA models created using the Criterium DecisionPlus (CDP) authoring tool can be run against map features in a study area, to generate analysis graphs, tables and maps showing the decision model outputs. This chapter introduces MCDA and discusses considerations both when designing MCDA models using CDP, and running them in the EMDS.    
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3.1 Multi-criteria Decision Analysis and EMDS
In the first section of this chapter, I provide a brief introduction to multi-criteria decision analysis (MCDA). In the second section, I describe two popular approaches to MCDA and how the MCDA-modeling tool, CDP, implements them, and what the decision maker can learn from them. In the subsequent section, I describe how CDP models are used in EMDS and some considerations for their design. In the final section, I point the reader to later chapters of this book, where examples of the use of MCDA in EMDS are discussed.
3.1.1 Multi-criteria decision analysis XE "Multi-criteria decision analysis" 
Multi-criteria decision analysis is concerned with decisions amongst alternatives when decision makers have multiple, often competing criteria, that they require the alternatives to address. 
One of the earliest descriptions of multi-criteria decision analysis (MCDA) was provided in 1771 in a letter by Ben Franklin (Franklin 1956). A friend had asked him how to decide whether a course of action should be pursued or not. Franklin described a structured decision process he himself used. He would write pros and cons in two columns, estimate their respective weights and eliminate pros and cons that seemed equal, so that a he could see “where the balance lies.” 
Modern MCDA generalizes and formalizes this approach (Keeny and Raiffa 1976), providing an axiomatic underpinning for its assumptions and expressing its methods as either mathematical algorithms or decision rules (Malczewski 1999). Given that decision making is a practical and ubiquitous task of bureaucracies and enterprises everywhere, various approaches that more or less encompass Raiffa and Keeney’s academic MCDA framework have been popularized – for example, Even Swaps (Hammond et al 1998), Value Focused Thinking (Keeney 1992), Decision by Advantages (Suhr, 1999) and more loosely, The Balanced Score Card (Kaplan and Norton 1996).
3.1.2 MCDA and spatial decision support systems
MCDA techniques are very useful for spatial decision support, whether choosing one location amongst a group of alternative sites or simultaneously prioritizing many geographic features – e.g., lakes, rivers, roads - in an area. Geographical Information Systems (GIS) appeared in the late 1960s (Coppock and Rhind 1991) and digitally implemented the map overlay approach to spatial decision making pioneered by Ian McHarg (Longley et al 2001). Map layers representing unique attributes co-existing in a common space were developed, one for each decision criterion. A weight was associated with each criterion layer, and the value of each layer at a given point is multiplied by that criterion’s weight. Finally, those weighted values are summed to produce a new layer, whose values can be interpreted as decision scores, and the new layer becomes a decision surface (ESRI 1995, Malczewski 1999). Decision surfaces can be used to select the most suitable areas to locate an alternative, or prioritize a suite of management actions. MCDA is highly useful for formalizing any GIS process that recognizes the centrality of competing objectives, and the need to weigh their relative importance in spatial decision making. 
Over the last decade, MCDA has been applied to hundreds of environmental decisions (Huang at al. 2011). It is well suited to ecological management where multiple criteria associated with environmental, socioeconomic, or technical factors have to be considered. The Ecosystem Management Decision Support (EMDS) system provides both a well-defined decision workflow (Chapter 1) and a spatial decision-support development environment that enables analysts and land managers to create and seamlessly apply MCDA models to mapped features of any system.

3.1.3 Two core uses of MCDA in EMDS

The popular book “Blink” (Gladwell 2008) notwithstanding, decision making is a social process. A decision making process is formally described as a workflow of activities that may lead to an expected outcome. There are many possible workflows for decision making, but most are variations on a core workflow comprised of the following sequenced steps:  Issue Articulation >> Decision Process Design >> Condition Assessment >> Alternative Design >> Choice (SDS Consortium 2008).

3.1.3.1 MCDA for completing the Condition Assessment step

In Chapters 1 and 2, the use of knowledge or logic modeling in EMDS to generate estimates of the strength of evidence in support of high functioning processes and primary components of an ecosystem was described. For the purpose of decision making, a synthesis of the current conditions of the ecosystem is needed to implement the condition assessment step of the workflow. Then, if a change to the ecosystem can be forecast to modify the underlying input data of the current analysis - captured in EMDS as scenarios (see Chapter 1) - the same evaluation model can be re-applied to the changed state of the system. This makes it possible to compare the current and alternative scenario spatial evaluation outputs to ascertain, feature by feature, across the study area, where the proposed change would improve or degrade the current ecosystem. 
EMDS helps users articulate reasoning about landscape features – e.g., stands of trees, watersheds, river reaches – to (typically) arrive at estimates of the strength of evidence, or truth level, for assertions about the condition of a process or subsystem of the ecology. To create single or multiple estimators, the user must still a) interpret each primary hypothesis and the strength of evidence supporting it, in terms of a quantitative metric, and b) weigh and combine the interpreted metrics into a single number for each feature. In EMDS, these synthesis steps can be implemented either using the logic modeling of NetWeaver (Chapter 2) or through explicit multi-criteria decision analysis, in which the features are the alternatives, the primary hypotheses become criteria, and their strength of evidence serves as ratings of the feature against those criteria. The latter approach is most appropriate when the relative weighting of ecosystem components does not emerge from the modeling of underlying processes of the ecosystem, but are imposed as informed judgments of the relative importance of the components in a particular decision context – the ‘evaluation models’ of the Steinitz planning workflow (Steinitz 2012).
3.1.3.2 MCDA for supporting the Choice step

More typically, in the current EMDS system, MCDA is employed to partially implement the choice step of decision workflows. Rather than evaluating individual actions that change the state of the system, decision makers instead prioritize subcomponents of the ecosystem for restoration work, conservation, or preservation. To do this, they combine the estimates of the current condition of subcomponents of ecosystem with independent estimates of the feasibility of conducting restoration work or applying preservation ordinances, and the likely efficacy of any work or ordinance on those subcomponents. The relative weights decision makers apply to these competing needs, feasibilities, and efficacies, when looking for the highest priority subcomponents, involve expert judgments that reflect constraints and aspirations that do not emerge from the ecosystem modeling directly, making MCDA a suitable approach to support this prioritization step. 
3.1.4 The history of MCDA in EMDS
In 2002, multi-criteria decision analysis was incorporated into version 3 of EMDS by integrating the Priority Analyst – a computation engine and visualization component that executes and displays MCDA models authored in Criterium DecisionPlus. Criterium DecisionPlus (CDP) is a Microsoft Windows-based tool first released in 1993 by Sygenex Corporation, then acquired in 1995, and currently supported by InfoHarvest Incorporated of Seattle, WA. 
At the time, CDP was selected over other available Microsoft Windows™-based MCDA programs because it offered utility functions for rating alternatives against criteria (see below), pairwise preference elicitation, and uncertainty analysis. Most importantly, it had an associated MCDA engine ready that could be integrated into other Window-based programs. 
The Priority Analyst becomes available to EMDS users after they have executed a NetWeaver logic model (Chapter 2) in the analysis step of the EMDS workflow (Chapter 1). The outputs from applying the MCDA model to map features in the study area are tables and maps showing the decision scores of those map features.
3.2 Multi-Criteria Decision Analysis and CDP XE "Criterium DecisionPlus" 
This section describes the implementation of MCDA in the software application Criterium DecisionPlus (CDP), and decision and analysis outputs common to MCDA applications.
3.2.1 MCDA decision hierarchies in CDP XE "Criterium DecisionPlus:Decision hierarchies" 
3.2.1.1 A generic multi-criteria decision model

Figure 3.1 represents a generic multi-criteria decision model captured in Criterium DecisionPlus (CDP). How an alternative meets the overall goal of a decision can be estimated by how well each alternative rates against a set of weighted criteria. Criteria can be successively broken down into sub-criteria, as needed, until a level of granularity is reached at which the decision makers feel comfortable rating alternatives directly against these lowest criteria, based on available information and experience. Those criteria in the models against which alternatives are directly rated are called lowest criteria. The alternatives to be considered in making this decision are shown at right, with links connecting them to the lowest criteria. 
In general, sub-criteria require more detailed knowledge of the decision problem. In CDP, a decision hierarchy is graphically represented, which renders decisions more readily comprehensible to decision makers and stakeholders. Graphical representation also reinforces discipline in problem structuring, and a process that breaks decisions into manageable components. 

Alternatives are rated against the lowest criteria (the sub-criteria in Figure 3.1 above). Assigning weights to the various criteria and sub-criteria completes the decision model. At that point, mathematical calculation can be performed to determine the preference of the alternatives using algorithms specific to the rating methods. These are described in the next section. 
The design tasks that must be completed by an analyst creating an MCDA model are:  1) create the structure of the decision hierarchy, 2) decide how weights will be elicited, 3) decide how preferences will be aggregated, and 4) define the metrics for each lowest criterion against which the alternatives will be weighted. 
3.2.1.2 Designing the structure of an MCDA decision hierarchy XE "Criterium DecisionPlus:Designing a decision hierarchy" 
Almost any decision making formulation can be represented using a decision hierarchy, including Goal - Objective - Criteria, Strengths - Weaknesses - Opportunities - Threats (SWOT), and threat-based risk evaluation. 
The Goal - Objectives - Criteria approach is one that many have found useful. In this formulation, the model designer (or analyst) uses the brainstorming capability within CDP to ask a decision-making group to articulate the goal of their decision opportunity – e.g. prioritize a forest area for action (Reynolds and Peets 2001), or select the best programmatic alternative in a NEPA process (GSNM 2010). The designer then asks what objective(s) does the group hope to achieve with the decision, and which criteria can be used to evaluate how well alternatives achieve objectives?  In the best brainstorming process, concrete metrics (quantitative or qualitative) are identified for those criteria. This last step of developing metrics can be left until the later step at which alternatives are rated, but such omission often contributes to vagueness when defining criteria, which must be resolved later in the ratings step.
There are at least two key points about structuring a decision hierarchy that are important to those designing them. First, a sub-criterion may contribute to two or more criteria, and the result is not double counting provided that the criteria represent independent contributions to the value of an alternative within the decision model. For instance, in a model of the value that infrastructure components contribute to the Nation, hydro-electric power generated may contribute to both energy independence and clean air, two independent criteria. Second, some criteria may have more levels of sub-criteria below them than others. Consequently, not all lowest criteria reside together at the lowest level of a hierarchy.

Figure 3.2 shows a decision hierarchy for prioritizing watersheds in the Chewaucan River Basin in Oregon. This was part of a multi-scale analysis that prioritized both watersheds and stream reaches for protection and restoration (Reynolds and Peets 2001). An MCDA model was developed for each scale. The watershed prioritization model in Figure 3.2 featured top-level criteria of efficacy, feasibility, water shed condition, reach condition and stream access. From the figure, it is apparent that some of these criteria are lowest criteria, some are not. The decision score for each watershed was interpreted as its priority for restoration actions. This MCDA model will be used as an example throughout this chapter.
3.2.2 Two standard methods for multi-criteria decision analysis 

CDP implements two decision-making methodologies commonly used by corporate and governmental decision-making bodies: the Analytic Hierarchy Process (AHP, Saaty 1992) and an implementation of Multi-attribute Utility Theory called Simple Multi-Attribute Rating Technique (SMART, Von Winterfelt and Edwards 1986). Both of these methodologies use decision hierarchies with weighted, linear aggregation; the key difference lies in the alternatives rating techniques employed - the ways in which the ratings of alternatives on the lowest criteria scales are converted into priority values (Figure 3.3). In CDP, the choice of how criteria weights will be elicited – the hierarchy preference technique – is independent of the rating technique. In this chapter, I refer to the AHP and SMART rating techniques; however, in reality, there are significant epistemological differences between the two methodologies. 
3.2.2.1 The Analytic Hierarchy Process XE "Criterium DecisionPlus:Analytic Hierarchy Process" 
The Analytic Hierarchy Process (AHP) was developed in the 1970s by Dr. Thomas L. Saaty at the University of Pennsylvania, Wharton School of Business, and is a method of organizing information and judgments to select a preferred alternative (Saaty 1992, Dyer and Forman 1991). To make any decision, decision criteria are grouped and then prioritized. In AHP, the most important criteria are grouped at the highest level, closest to the single overall goal of the model, with sub-criteria grouped below, which further define their parent criteria. 

Graphically in the AHP, a decision problem is constructed as a layered network diagram starting with the goal, then showing at the next lower level, the first level of criteria to be considered, followed by further lower layers of sub-criteria as warranted, and finally the alternatives. Such a diagram represents a decision hierarchy of elements (goal, criteria and alternatives) that are to be considered in selecting the preferred solution(s). It may be displayed vertically or horizontally as in Figure 3.1.
In the classic “distributed” AHP mode (see next section), the user rates alternatives either using the pairwise comparison method or directly on a user defined scale, both of which calculate the priority value of an alternative against a criterion as a relative value, with the priority values for all alternatives against a criterion summing to 1 for that criterion.
3.2.2.2 Simple Multi-Attribute Rating Technique XE "Criterium DecisionPlus:Simple Multi-Attribute Rating Technique" 
The Simple Multi-attribute Rating Technique (SMART) is another technique implemented in CDP. It originates from the work done in Multi-Attribute Utility Theory (MAUT) by Ward Edwards in 1977 (Von Winterfelt and Edwards 1986).

When using SMART in decision making, the decision problem is broken down into objectives with attributes, and single-attribute evaluations of the alternatives are constructed by means of value measurements. As for the AHP, a value tree structure is created to assist in defining the problem. The lowest criteria are referred to as attributes. Values are determined for each alternative against each attribute. Finally, weighted linear aggregation of the model provides results facilitating comparison of the alternatives.

SMART provides a straightforward way of employing MAUT techniques. In it, a direct rating procedure is applied to assess alternatives against single attribute values, and the resulting priorities are aggregated using weighted sums to calculate the preference for each alternative. The rating procedure uses nonlinear monotonic functions in assigning priority values to the attributes.

Many other general methods have been developed for operationalizing the MCDA process (Triantaphyllou 2000, Belton and Stewart 2001). Each has advantages and disadvantages in terms of theory, ease of use, fidelity to the decision makers’ context, and susceptibility to misuse. The two methods that CDP implemented are widely used (Saaty and Forman 1992, and Haung et al 2011), are most directly connected to the underlying theories of decision making, and have the simplest underlying mathematics, which is important for end-user verification of a systematic and logically derived decision-making process.
3.2.3 Hierarchy preference techniques XE "Hierarchy preference techniques"  

No matter how complex the hierarchy structure, the basic algorithm in multi-criteria decision analysis is to multiply the priority value of an alternative against each lowest criterion by the relative importance of that criterion. The resulting products are summed across all lowest criteria to provide an overall decision score for that alternative. The decision score measures how well any alternative satisfies the overall decision model. 
For hierarchical models with intermediate layers of criteria, the user assigns preferences to all sub-criteria that contribute to a parent criterion (the one nearest the goal node). These preferences are converted, according to the decision rules of the specific preference technique, to priority weights for each subcriterion. The priority weights of that set of contributing criteria add up to one. This process is repeated for all parent criteria with sub-criteria. The priority weight of the parent criterion is then applied to the priority weights of its subcriteria through multiplication, onwards from the goal (which has nominal weight of one), down through all sub-criteria sets until the lowest criteria are reached. The priority weight of a lowest criterion is then the sum of the weights obtained by repeated multiplication of the weights along all pathways that stretch from the goal node at the top to that lowest criterion (see  Figure 3.4 A). For a concise algebraic description, see Golden et al. (1989). One important consequence of this approach, in which the priority value of the parent criterion is “distributed” (Forman and Gass 1993) amongst its sub-criteria, is that, when the derived priorities of all the lowest criteria are summed, the result is 1. In other words, the priority of the goal is fully distributed amongst the lowest criteria of the decision hierarchy, regardless of how many levels of intervening criteria are in the model. 
The derived priority weights of the lowest criteria are referred to as model weights – as any complex decision hierarchy that uses linear aggregation can be replaced by a two-level – goal and lowest criteria - model with those model weights without changing the decision score of the alternatives (see Figure 3.4 B).

3.2.3.1 Hierarchy preference elicitation techniques
CDP supports two decision analysis techniques to establish the relative importance of the lowest criteria or attributes. 
3.2.3.2 Hierarchy preference technique - weights XE "Hierarchy preference techniques:Weights" 
In the weights preference technique, the user assigns the relative importance of each sub-criterion with respect to the other sub-criteria of a given parent criterion as a weight. Typically, a user would start at the Goal, and ask the decision makers to judge the relative importance of each of the criteria directly beneath the Goal, and then repeat this process for every criterion with sub-criteria in the model. Once complete, CDP multiplies these preferences down the structure of the hierarchy, so that each lowest criterion is assigned a relative importance – a model weight – with respect to all other lowest criteria. There are a number of methods available to elicit the weights of criteria.
Direct weights. In the direct weights elicitation method, decision analysts enter weights, one per sub-criterion of a parent criterion, directly on a scale of their design. The weights input mechanism may use any combination of numeric, verbal or graphical scales (Figure 3.5). Numeric scales are fully characterized by minimum and maximum values and the orientation of the scale – whether higher values correspond with higher preference, or not. Verbal scales are comprised of an ordered set of text items, with each item being interpreted as having a numeric value, equally spaced from the minimum to the maximum of the numeric scale, or the reverse, depending on the desired orientation of the numeric scale. When using a graphical scale, the user sees a colored slider for each sub-criterion, where again the left of the slider corresponds to the minimum of the numeric scale, and the right to the maximum, or the reverse, depending on the desired orientation. 
The weights are linearly normalized, with the priority weight, which will be the relative weight used in the weighted sum algorithm, of each sub-criterion being its numeric value divided by the sum of the numeric weights of all the sub-criteria. As such, these are ratio scales – if the user weight for one sub-criterion is twice that of another sub-criterion in the same rating set, then the priority of that sub-criterion will be twice that of the other. By dint of their derivation, the priority weights of the set of sub-criteria that contribute to a parent criterion add to one.
Custom scales can be created for both the numeric and verbal mechanisms. Designers are encouraged to choose an elicitation mechanism that suits their decision makers. Verbal scales should use language that the organization’s experts would generally use, but keeping in mind the ratio nature of the scales.
Pairwise comparison. A key technique in the original form of the Analytic Hierarchy Process was the use of pairwise comparisons to elicit expert judgment for the relative importance of criteria. The origin of this approach was the observation that psychologically people are more adept at comparing the relative value of two items rather than assigning them each a value on an abstract scale (as in the direct weights mechanism above) (Saaty 1992). To operationalize this observation for decision making, the AHP developed both a nine-point scale for pairwise comparison, and a mechanism for extracting a set of direct weights from the n (n-1) unique pairwise estimates that result when there are n sub-criteria in a rating set. In addition, the theory developed an inconsistency index based on the individual pairwise comparisons that indicates raters’ consistency throughout a set of pairwise comparisons (Saaty 1992). 
The nine-point scale ranges from 1 to 9. Comparing sub-criterion c1 to c2, a value of 1 expresses the judgment that c1 and c2 are equally preferable. A value of 9 indicates that c1 is 9 times more preferable than c2. If c1 is twice as preferable to c2, and c2 is three times as preferable as c3, then consistency in the method requires that c1 be six times more preferable than c3. Because the decision makers compare the criteria in pairs, their judgments may not be consistent – when comparing c1 against c3, they may directly judge c1 as 5 times more preferable to c3. In AHP, an inconsistency index, is calculated from the n (n-1) pairwise comparison matrix. The indexed value is then divided by the average inconsistency of randomly generated matrices of the same size, to arrive at an inconsistency ratio. When the inconsistency ratio is more than 10%, it is considered advisable to reexamine the pairwise judgments to decrease inconsistent judgments before proceeding with the decision (see Golden [1998] for a concise description of the underlying mathematics, and Saaty [2007] for a summary of the case for the psychological underpinnings of pairwise comparisons.)
When eliciting judgments from decision makers, a formal pairwise verbal scale is often used that corresponds to the 1-9 numeric values (Figure 3.6). CDP then assigns the corresponding numbers and executes the principal eigen-value calculation that generates the n normalized priority values. 
For the designer, when using pairwise comparisons, there are no explicit design choices to make. The pairwise comparisons method assumes that the sub-criteria being evaluated will not have some sub-criteria that are orders of magnitude more important than others. If that seems likely, it would suggest that some sub-criteria are misplaced in the hierarchy. 
3.2.3.3 Hierarchy preference technique – direct tradeoffs XE "Hierarchy preference techniques:Direct tradeoffs" 
Another way to establish the relative importance of the lowest criteria is by directly setting their relative tradeoffs.

In any difficult decision, some decision objectives always conflict. For example, consider the common desire to have the highest quality at the lowest price. The essence of the multi-criteria decision is the tradeoff between such competing objectives, and this is most directly measured by the numerical tradeoffs between the lowest criteria, which provide metrics for those objectives. For instance, a reasonable tradeoff between cost and schedule for a construction proposal might be $100,000 for one month. This means the user is willing to pay $100,000 to avoid a 1-month delay in a particular project. The user would proceed with pairwise tradeoff judgments, pair by pair, until all lowest criteria have been traded against each other. At that point, CDP can calculate the relative importance of all lowest criteria in the model, and the weights of the hierarchy that would support those tradeoffs. This direct tradeoffs technique, available in CDP since version 3.0 (1995), is similar to the way priorities of alternatives determine criteria weights in the distributive mode in the Analytic Network Process (Saaty 2008).
3.2.3.4 Interchangeability between hierarchy preference techniques 

Mathematically, if both the scales of the lowest criteria and the relative importance of the lowest criteria are known, the resulting tradeoffs of lowest criteria can be calculated (Figure 3.7). Conversely, if the scales and the tradeoffs are known, it is possible in CDP, for hierarchies that are true tree structures (no criterion is a sub-criterion of more than one parent criterion) to calculate the relative importance of the lowest criteria (by uniquely determining the priority weights at every level of the hierarchy). Provided the scales of the lowest criteria are unchanged, the decision maker can switch between weights and tradeoffs preference techniques; for true tree structures, changing from one method to the other will not change the relative importance of the lowest criteria in the decision model. 
3.2.3.5 Comparing hierarchy preference elicitation techniques XE "Hierarchy preference techniques:Comparing" 
Numerical tradeoffs have the great advantage that their values can be compared to company or industry norms, and (with care) to published research. If adjustments to the tradeoffs entered by the decision makers need to be made, it is simpler to do so using the direct tradeoffs than the weights elicitation technique. In the latter case, the user must perform mental gymnastics to figure out what weight changes will generate the required changes in derived tradeoffs.
On the other hand, asking stakeholders to provide a direct tradeoff value can be intimidating. They may not understand what is meant by a tradeoff, or they may not be familiar enough with the decision space to hazard a good estimate, or both. Furthermore, if many of the lowest criteria are qualitative in nature, a tradeoff such as 1 unit of Reputation for 3 units of Quality may be meaningless or difficult to assess.

For hundreds of years, people have made decisions that involve directly weighing the importance of one criterion against another, and deciding on the alternative that performs best against the most important criteria (Franklin 1956, Keeny and Raifa 1976). The weights elicitation technique may thus provide a more intuitive approach than direct tradeoffs when many of the lowest criteria are qualitative in nature, or decision-makers are uncomfortable providing tradeoff judgments. Preferences established using weighting techniques can be explored using the tradeoff analysis discussed below. As decision makers come to understand tradeoff analysis, they are often more willing to switch to the direct tradeoff technique for establishing hierarchy preference.
3.2.4 Alternative rating techniques XE "Alternative rating techniques" 
Two methods for determining the priority values of alternatives against a lowest criterion (or attribute) are described below.

In 1993, CDP was the first commercial package to offer both SMART and AHP methodologies for rating alternatives. The author was able to verify the work of Kamenetzky (1982), and implement the relationship between weights, scales and tradeoffs so that a user can, within limits, change between SMART and AHP ratings methods on the fly. While the calculated decision scores for each alternative are very different under the two methods, we at InfoHarvest have found that, except under limited conditions, the rankings of alternatives were unchanged by such a switch.
3.2.4.1 Normalizing ratings in MCDA models
In order to aggregate the contributions of criteria with differing scales, the decision model must provide a method for handling differing ratings scales on an equal footing. For example, if a decision in the healthcare field involved criteria that used dollars and human lives as scales in the same model, the model needs to handle both very different scales consistently so that meaningful weights or tradeoffs can be established. In both AHP and SMART, the alternatives rating technique itself handles this through normalization, in which all scales are converted to a common internal scale that takes a value between 0 and 1.
3.2.4.2 Normalizing alternatives in AHP XE "Alternative rating techniques:Normalizing alternatives in AHP" 
In AHP, when using a direct rating method to obtain the comparable cross criteria ratings or priorities, the user-provided ratings values under a lowest criterion are divided by the sum of the ratings of all the other alternatives against that criterion. This guarantees that no matter what the values or units of measurement of the original user ratings are, all priorities will fall between 0 and 1, the priorities of all alternatives sum to 1. A normalization method with these properties is called a relative normalization – the priority value of an alternative against a lowest criterion depends on the ratings of all the alternatives under that criterion. In the case where pairwise comparisons of ratings are used to prioritize alternatives under a lowest criterion, the derived direct weights already show this relative normalization. The relative normalization of ratings in AHP, coupled with the distributed nature of the weights of the lowest criteria, guarantee that the sum of the decision scores of all the alternatives themselves sum to 1 – the entire preference of the model is distributed over the alternatives (Saaty 2007, Forman and Gass 1993).  In CDP, the AHP alternatives rating technique utilizes this relative normalization technique.
This is a simple and effective method that allows synthesis across criteria, with scale units that are completely different. The distributed nature of the preference scores means that the decision score of any one alternative in the model depends on the array of alternatives that are being considered. For instance, in an AHP model that utilizes a relative normalization, if a model is created for an initial set of alternatives, adding a new alternative later can change the relative scores of each alternative in the original set.
3.2.4.3 Normalizing alternatives in SMART XE "Alternative rating techniques:Normalizing alternatives in SMART" 
SMART doesn't use a relative method for scaling user defined rating units to a priority scale from 0 to 1. Instead, decision analysts define their own method for doing this using a value function. A value function uses mathematical functions to transform ratings on the user’s input scale to priorities on the common model scale. Much research has been done in determining the most appropriate value functions for a given decision problem (Von Winterfelt 1986). CDP provides three value functions for transforming user ratings to priorities for each attribute: a linear function, an exponential function, and a piecewise linear function. These three functions provide sufficiently broad choices for most decision making, although they are all monotonic, to the chagrin of fuzzy logic champions.
3.2.4.4 Rank reversal of alternatives XE "Alternative rating techniques:Rank reversal of alternatives" 
MCDA models whose alternatives are rated using the relative normalization technique described above can exhibit a controversial behavior called rank reversal. Basically, in such a decision model, if a new alternative is introduced, it affects the normalized decision scores of all alternatives. So even though the alternative introduced may itself not be high scoring, it may cause a shift in ranking of the previously highest scoring alternatives. Over the decades, this behavior has offended both decision theorists and engineers. A good overview of rank reversal is provided by Tversky (1969), and its occurrence in other MCDA approaches by Triantaphyllou (2000) and Wang and Triantaphyllou (2008). In more limited cases, the same phenomenon arises in SMART (Salo and Raimo 1997), where an alternative is introduced that requires a new minimum or maximum of an attribute scale, the priorities of all alternatives for that attribute will change, possibly leading to rank reversal. 
In 1993, Forman introduced the ideal mode for the AHP, in which the relative normalization of alternatives described above was relaxed in favor of scales with appropriate units. In this mode, the MCDA decision model was adjusted to display relative AHP weights for criteria, but linear SMART value functions for ratings. Foreman argued that the original AHP with relative normalization of alternatives described above, often referred to as the distributive mode (of prioritization of lowest criteria to alternatives) may also be appropriate to some decision contexts. In particular, he suggests (Forman and Gass 2001) that the ideal mode should be used when there is no scarcity of alternatives, and the distributed model be used when there is. This is discussed further in the section on considerations when developing an MCDA model for use in EMDS.
3.2.4.5 The decision hierarchy structure for SMART and AHP in CDP
The structure used to model decision problems in SMART is called a value tree, or objective hierarchy. The difference between a SMART value tree and an AHP hierarchy is that the value tree is a true tree structure, restricting each sub-criterion to be connected to only one higher level criterion. In AHP, a sub-criterion can connect to more than one higher level criterion. However, if the user changes the rating technique from AHP to SMART, the user is not forced to restructure the hierarchy as a true tree structure. The difference occurs at the attribute level with the normalization of alternatives under different attributes. 
However, if the Direct Tradeoffs preference elicitation approach is used to set hierarchy preferences, the hierarchy must again be a true tree structure. Otherwise the paired tradeoff comparisons cannot be used to calculate the unique set of criteria priority weights that would reproduce those same values of the tradeoffs between lowest criteria.
3.2.5 Results and analysis XE "Criterium DecisionPlus:Results and analysis" 
When an MCDA model is complete – hierarchy designed, lowest criteria scales established, weights or tradeoffs elicited, alternatives rated against lowest criteria – then the decision scores for each alternative can be calculated. When sorted by diminishing decision scores, the alternatives are said to be prioritized. Figure 3.8 shows that in the Chewaucan River Basin study,  the Bear Creek watershed received the highest priority, over 3 times that of the South Creek watershed, which received the lowest priority. For decision opportunities that require a single alternative to be chosen, the alternative with the highest decision score is usually the recommended alternative.

The “A” in MCDA is for analysis, and that is where MCDA tools provide their core worth – helping the user validate, as far as possible, the decision scores calculated for each alternative. Those scores depend on the weights, ratings, and structure of the decision model.
3.2.5.1 Analysis of contributions by criteria XE "Criterium DecisionPlus:Contributions by criteria"  
The most straight-forward analysis is simply the decomposition of the aggregated preference values at any node in the model into the contributions by the criteria from individual levels in the models. In this analysis, the user selects any node in the decision hierarchy – goal, criterion, sub-criterion – and any level in a decision hierarchy, and observes how the aggregated preferences of the alternatives for that node are made up of the contributions from each criterion in the selected level.
For the Goal node, the aggregated preferences are the decision scores themselves. Figure 3.9 displays the contributions to the decision scores from the criteria in the Criteria level for the Upper Chewaucan River prioritization example. From the graph, it is evident that two watersheds with the highest priority are differentiated from the others due to the contribution they receive from the criterion for watershed condition (WS Condition). In the study, the strategic approach was taken that watersheds in good condition, as evaluated in a NetWeaver model, were given extra priority. The question for the decision makers is - do the rankings make sense? Is there a pair of alternatives well known to the decision makers whose relative rank is the opposite of what was expected? When perceived anomalies are noticed, drilling down through the levels can reveal whether weights, user ratings, or normalization are in need of correction, or perhaps that the initial feeling that the alternatives’ rankings were reversed is dispelled.
3.2.5.2 Tradeoffs of lowest criteria XE "Criterium DecisionPlus:Tradeoffs of lowest criteria" 
As discussed above, where the SMART alternative ratings technique is used, once the scales for the lowest criteria are defined, value functions are set, and all weights captured, the tradeoffs per alternative can be calculated and displayed in a “tradeoffs of lowest criteria” analysis table. Figure 3.10 provides an illustration of one such table. It shows how many units of each lowest criterion give rise to the same increase in decision score for the top ranked alternative. Since the magnitude of the increase effects the answers, the increase in the decision score considered is defined as that which a one unit increase in a reference lowest criterion would provide. In the figure, the lowest criterion of Seral openings was selected as the reference criterion, and the table shows that, to cause the same decrease in decision score that an increase of 1% in Seral openings would produce, a decrease of 6.37% in canopy density would be required. These values can reveal unforeseen tradeoffs that were established during weights elicitation – e.g., a one week delay in schedule being traded off for $2 million in project costs. If the context of the decision provides decision makers with some expectation of the tradeoffs for some of the lowest criteria, (based on, for example, organization norms or industry best practices), tradeoffs can be identified as unacceptable or fanciful. In the previous example, if the time frame for delivery is 5 years, and the projects being considered cost around $10m, it would appear that the decision makers are putting an unusually high importance on schedule compared to cost. The insights in this table can reveal unacceptable judgments of the importance of criteria that are otherwise difficult to identify by examining only the overall decision scores and rankings. 
3.2.5.3 Sensitivity to weights XE "Criterium DecisionPlus:Sensitivity to weights" 
There may be many weights to be elicited, depending on the complexity of a decision hierarchy. Sensitivity analysis can provide some insight as to which weights decision scores are most sensitive, and, more usefully, to which weights the decision scores are relatively insensitive. Weights are the numerical embodiment of elicited judgments, and as such may represent the greatest source of uncertainty in an MCDA model. Knowing which weights decision scores are insensitive to means uncertainty in those weights may be ignored, and decision makers can focus deliberations and validation on those to which the decision scores are sensitive. 
    CDP provides a sensitivity analysis method based on varying a single weight at a time, and then estimating how large a change – the critical value - would have to occur in that weight before the current top ranking alternative is overtaken by another. To place the sensitivity analyses for all the weights on the same scale, regardless of the user-defined weights scale (direct or pairwise) used for elicitation, CDP calculates that critical value in terms of changes in the locally normalized values of the weights - the critical priority values. All the weights are then ordered by increasing critical priority values, to provide decision makers with comparable estimates of the overall sensitivity of the entire model to these “one-at-a time” changes in weights, and to draw their attention to those weights to which the decision scores are most sensitive.
3.3 Conducting MCDA in EMDS

3.3.1 The Priority Analyst XE "Priority Analyst" 
In EMDS, the MCDA methodology is introduced in the Priority Analyst step of the EMDS workflow (Chapters 1 and 13). When the user has completed an analysis using logic modeling (Chapter 2), they can create an MCDA prioritization of the map features by creating a Priority Analysis. A priority analysis uses the topics and calculated data links (from the logic model employed in the analysis step) as inputs to the lowest criteria for an MCDA model, with each map feature in the study area treated as an alternative.

The EMDS analyst uses CDP to create the full decision hierarchy, but with only a default, or a few example features (recommended!) included as alternatives. A typical CDP model in EMDS combines topics from NetWeaver logic models that estimate the truth level of an assertion about a condition of map features, along with original attributes of the map features that can be useful to characterizing feasibility and effectiveness of actions that might be taken to improve conditions of the feature. Such attributes can be included and managed in the NetWeaver logic model as calculated data links (see Section 2.2 of Chapter 1). The analyst maps the lowest criteria in the decision hierarchy to selected topics and data links either as an explicit mapping table when they invoke the Priority Analyst in EMDS and load the CDP model, or by including their names in the external identifier (XID) attribute of the lowest criteria in CDP. In EMDS, a complete list of topic or data link mapping to lowest criteria is called the CDP Mapping Table. 
In such an MCDA model, the weights reflect expert opinion as to the relative contributions of criteria related to conditions, effectiveness and feasibility criteria when prioritizing features for restorative action or management emphasis. The resulting decision scores for individual features can be sorted to provide an estimate of the relative priority of all map features.
From the EMDS workflow manager (Chapter 1), the analyst launches the Priority Analyst – an MCDA graphical user component – that uses the embedded CDP-engine to load the CDP model and mapping table, and calculates the decision scores for all the map features considered in the analysis step. The Priority Analyst provides the analysts with the key MCDA analysis functionality discussed above – contributions by criteria, tradeoffs and sensitivity to weights – for the many (possibly 1000s) of map features. The decision scores of the features can then be used to generate a map layer that is added to EMDS’s map table of contents. The default symbology of that map layer helps the analyst and stakeholders see which features have the highest priority, and where they are located. A “Hot Links” function makes it possible for the user to click on any feature in the map layer and see the contributions of top level criteria to the decision score for that feature.
3.3.2 Special considerations when developing an MCDA model in EMDS
3.3.2.1 Normalizing ratings of alternatives

In Forman and Gass (2001), they argue that the “ideal mode” for normalizing ratings of alternatives is appropriate when there is no scarcity associated with the selection of the alternatives – the selection opportunity is “open”. If there is an absolute limit to a resource being distributed amongst the alternatives – and the example they provide is a government assigning its entire gold reserve to all segments of the population – they argue that the classic or “distributed” AHP normalization should be used for the alternatives, as the selection opportunity is “closed.”
If the purpose of the EMDS project is to select a single alternative – e.g. siting a single water treatment plant – no scarcity is involved. However, in a more typical ecological restoration or preservation model, a subset, often 10%-20%, of all map features is to be selected for action – whether restoration, preservation, mitigation or removal. While limitations on the amount of resources available (funding, people, materials) will constrain the number of features in the subset, the decision process is not “closed” – there is no expectation that all map features considered will have some portion of a finite resource allocated to them. Consequently the SMART normalization for alternatives is generally suitable for CDP models that will be used to prioritize map features for action in EMDS. 
If the analyst wishes to execute a closed analysis, and use the decision scores to proportionately allocate resources to all alternatives, then, as well as imposing classic AHP normalization on the alternatives in the CDP model, the analyst must also ensure that the lower end of the scales for each lowest criterion be set at the value at which an alternative under that criterion presents no value to the decision makers, and not just at the minimum value of all the alternatives on that criterion. This ensures that the decision scores are calculated on a ratio scale, a prerequisite if scores are to be used directly for allocation purposes. 
On a practical level, any normalization of alternatives that requires the ratings of all possible alternatives to generate a priority value for one, imposes computational challenges when the number of alternatives climbs into the millions, and representational challenges if the decision scores for all alternatives is always to sum to 1.

3.3.2.2 Hierarchy preference techniques XE "Priority Analyst:Hierarchy preference techniques" 
Regardless of the alternative rating technique chosen, any of the weights elicitation methods may be used. When decision analysts from the Forest Service use MCDA in EMDS (see Chapters 6 and 7), they tend to use pairwise comparison to establish preferences. Two reasons the author prefers using either direct weights (with a swing weights approach) or direct tradeoffs, is that it is easier for decision makers to understand the relationship between the weights elicited and the underlying variations in the ratings scales that give meaning to those weights (see Malczewski 2000).
3.3.2.3 Scales for rating alternatives XE "Priority Analyst:Scales for rating alternatives" 
In many EMDS analyses, key topics that are outputs of the NetWeaver models are estimates of the truth value (see Chapter 2) of assertions about the current state of the system, recorded on a continuous numeric scale that ranges from -1 (100% False) to 1 (100% True). Such topics are often used in CDP prioritization models to represent the current state of the system at different scales, for example the lowest criteria of stream and reach conditions in the CDP model to prioritize watersheds in the Chewaucan Basin example (see Figure 3.11). 
There is no guarantee that such products of logic modeling provide classic ratio scales. The analyst may want to consider developing value functions to transform such truth value scales to scales that more closely approximate ratio scales. How successfully this can be accomplished is worth further research.

For lowest criteria that are based on attributes of the map features, and passed through the NetWeaver model as data links, NetWeaver provides a broad set of mathematical functions to transform the raw attribute values to values that better match the ratings scales the analyst designed for the CDP model. Since CDP has no built in tools for data preparation, this EMDS functionality that passes such calculated data on to an MCDA prioritization model is very valuable, as it completes any needed data transformations before the data are used in the CDP model.  
3.3.2.4 Handling data and mapping errors XE "Priority Analyst:Handling data mapping errors" 
When the analyst maps a lowest criterion to a truth value of a condition or data link from an analysis, the corresponding data values for some features may be missing, or lie outside the rating scale range defined for the lowest criteria, or may be of the wrong type altogether – for example, a numeric value is encountered where the scale of the CDP lowest criterion specified a text input. The Priority Analyst provides various options as to how the CDP engine should handle the above situations, with options that range from stopping processing and raising error dialogs, to employing default handling – e.g., substituting the average value of the ratings scale – and allowing the entire feature set to be processed and then later providing flags and statistics on data errors encountered. Given that there may be thousands of map features to be prioritized, the analyst needs to decide on the appropriate error handling strategy for each prioritization project.
While CDP has the capability to propagate uncertainty in ratings of alternatives into uncertainty in corresponding decision scores, that functionality is not yet available in the Priority Analyst, and the interplay with strength of evidence for the topic outputs from NetWeaver is a subject of ongoing research.

3.4 Examples of MCDA in this book XE "Multi-criteria decision analysis:Examples in this book" 
Four of the nine chapters in Part II of this volume include some form of decision modeling in the applications presented. Keane et al. (Chapter 6) describe the use of decision models in the context of prioritizing federal forest lands for fuel-treatment planning. Hessburg et al. (Chapter 7) describe the use of decision models in several applications designed for landscape evaluation and restoration planning. In the latter two chapters, the Priority Analyst component of EMDS was used to support priority setting of landscape elements. Two other chapters present interesting variations on the use of decision models in the EMDS context. In an application for siting industrial parks in the Cantabria region of Spain (Puente, Chapter 11), weights derived from the AHP were directly built into the NetWeaver logic models rather than using the two-step process of EMDS v3 and later (Chapter 1). Finally, Bourgeron et al. (Chapter 5) describe a three-tiered decision model for prioritizing sub-watersheds for integrated restoration and protection planning in the Northern Region of the USDA Forest Service. Here, the AHP and SMART formulae used to compute priority scores for the sub-watersheds were programmed directly into a Microsoft Excel spreadsheet by user preference, and were intentionally designed to replicate some of the very basic functionality of the Priority Analyst. 

Finally as described in Chapter 13, in EMDS 5.0, the CDP engine will be upgraded to support services and distributed processing, and the outputs of the CDP Engine can be used as the inputs for other engines. In addition there are plans to introduce several improvements to the CDP engine to better support portfolio analysis – decision support for choosing a subset of alternatives that provide the maximum benefit for a given cost in resources. These improvements would include 1) identifying a sub branch of the hierarchy as cost(s), and another as benefit(s), so that the results could be ordered by cost-benefit ratios; 2) sensitivity analysis that focuses on the stability of the portfolio itself under changes in weights, and 3) a contributions analysis that is better integrated with the spatial map of features that are alternatives.
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Figure Legends

Fig 3.1 An example of a typical decision hierarchy that is laid out (arbitrarily) from left to right. Notice the overall goal node on the left, and then primary criteria that are further refined by sub-criteria. The rightmost sub-criteria, the lowest criteria, are those against which alternatives are directly evaluated. 
Fig. 3.2 A decision hierarchy for prioritizing watersheds in the Chewaucan Basin for riverine habitat restoration (Reynolds and Peets 2001). 

Fig. 3.3. Hierarchy Preference Techniques are used to set the preferences of all criteria in a decision hierarchy; Alternative Ratings Techniques are used to rate alternatives against the lowest criteria (attributes) in the decision hierarchy. They can be chosen independently of each other.
Fig. 3.4. A) The decision score sa1 for Alternative1 in a multilevel hierarchy is obtained by traversing all paths from the goal to the alternative, calculating the products of the priority weights along the paths, then multiplying that product by the priority of the alternatives (pa11, pa21, pa31) and finally summing those products over all the pathways. B)  This is equivalent to a two level model where the model weights of the lowest criteria (mg1, mg2 and mg3) are calculated from the original priority weights by summing their products over corresponding pathways.
Fig. 3.5 Graphical user interface for eliciting direct weights for the objectives contributing to the goal of “Restoration Priority” in the watersheds prioritization model in the Chewaucan Basin study. The figure shows three weights input mechanisms – numeric, verbal and graphical.
Fig. 3.6. Pairwise comparison of the criteria that contribute to the goal of “Restoration Priority” in the watersheds prioritization model in the Chewaucan Basin study.
Fig. 3.7. For decision hierarchies where the goal and criteria form a pure tree structure, and the scales of the lowest criteria are known, then the weights and tradeoffs of lowest criteria are deterministically interrelated – full knowledge of one determines the other uniquely.
Fig. 3.8. Bar chart of decisions scores of the watersheds for the watersheds prioritization model in the Chewaucan Basin study.
Fig. 3.9. Stacked horizontal bar chart show the decomposition of the decision score for each alternatives into the contributions from all criteria in the Criteria level for the watersheds prioritization model in the Chewaucan Basin study. 
Fig. 3.10. The table shows the tradeoffs of the ratings scales of all the lowest criteria compared to a reference lowest criterion in the watersheds prioritization model in the Chewaucan Basin study.For instance, in this MCDA model, a one percent increase in seral openings along the creek, is weighted to be equivalent to a 6.37% decrease in canopy density. 
Fig. 3.11. The lowest criteria highlighted in yellow in this MCDA model are mapped to the topics of Watershed and (Stream) Reach condition that are topics from the logic model that assess the state of watersheds and, in aggregate, stream reaches in the Chewaucan Basin. The other lowest criteria take their values from attributes of the sub-watersheds.
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